Рейтинговые книги
Читем онлайн Гиперпространство - Мичио Каку

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 88 89 90 91 92 93 94 95 96 97

102

Процитировано в: Коул «Теория всего» (К. C. Cole, А Theory of Everything, New York Times Magazine, 18 October 1987), c. 28.

103

Процитировано в: Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 11.

104

Процитировано в: Коул «Ответные вибрации: размышления о физике как образе жизни» (К. С. Cole, Sympathetic Vibrations: Reflections on Physics as a Way of Life, New York: Bantam, 1985), c. 225.

105

Процитировано в: Эдвард Харрисон «Маски Вселенной» (Е. Harrison, Masks of the Universe, New York: Macmillan, 1985), c. 211.

106

Один Кельвин и один градус Цельсия равны по значимости и соотносятся так: 1 К = 1 °C + 273,15. — Прим. ред.

107

Процитировано в: Кори Пауэлл «Золотой век космологии» (Corey S. Powell, The Golden Age of Cosmology, Scientific American, July 1992),c. 17.

108

На самом деле теория орбиобразия разработана несколькими авторами, в том числе Лэнсом Диксоном, Джеффри Харви и Эдвардом Виттеном из Принстона.

109

Много лет назад математики задали себе простой вопрос: если имеется изогнутая поверхность в N-мерном пространстве, сколько видов колебаний может существовать на ней? Представим, к примеру, что на барабан насыпали песок. Когда барабан вибрирует с определенной частотой, песчинки танцуют на его поверхности, образуя красивый симметричный рисунок. Различные рисунки песчинок соответствуют разным частотам, возможным на поверхности барабана. Так математики вычислили количество и определили виды резонансных колебаний на поверхности изогнутого N-мерного пространства. Они даже определили количество и виды колебаний, которые может совершать электрон на такой гипотетической поверхности. Для математиков эти расчеты были всего лишь замысловатой гимнастикой для ума. Никто и не думал, что они могут иметь какие-либо физические последствия. Ведь считалось, что электроны не совершают колебания на N-мерных поверхностях.

Всю эту совокупность математических теорем в настоящее время можно применить к проблеме семейств в теориях Великого объединения. Если теория струн верна, тогда каждое семейство теорий Великого объединения должно быть отражением какого-то колебания на орбиобразии. Поскольку математиками систематизированы различные виды колебаний, физикам остается лишь заглянуть в литературу по математике, чтобы выяснить, сколько существует идентичных семейств! Таким образом, источник проблемы семейств — топология. Если теория струн верна, происхождение трех дублирующих друг друга семейств частиц в теориях Великого объединения удастся понять лишь после того, как мы охватим сознанием десять измерений.

Как только мы свернем ненужные измерения в крохотный шарик, то получим возможность сравнить теорию с экспериментальными данными. К примеру, наименьшее возбуждение струны соответствует замкнутой струне с очень малым радиусом. Частицы, участвующие в колебании малой замкнутой струны, — те же самые, которые фигурируют в теории супергравитации. Таким образом, мы получаем все хорошие результаты супергравитации, не отягощенные плохими результатами. Симметричная группа новой супергравитации — Е (8) x Е (8), значительно превосходящая симметрию Стандартной модели и даже теорий Великого объединения. Следовательно, в теорию суперструн входят и теории Великого объединения, и теория супергравитации (без самых досадных недостатков и той и другой). Вместо того чтобы уничтожать соперников, теория суперструн просто поглощает их.

Проблема с орбиобразиями заключается в том, что таковых можно построить сотни тысяч. Это изобилие ошеломляет нас! В принципе, каждое из них описывает гармоничную вселенную. Но как определить, какая из вселенных та, что нам нужна? Среди тысяч решений мы находим немало таких, которые предсказывают именно три поколения или семейства кварков и лептонов. Кроме того, мы можем прогнозировать тысячи решений, в которых таких поколений окажется гораздо больше трех. Таким образом, если в теориях Великого объединения три поколения считаются избыточными, то во многих решениях для теории струн трех поколений явно недостаточно!

110

Дэвид Гросс, интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна (Paul Davies and J. Brown, ed., Superstrings: A Theory of Everything? Cambridge: Cambridge University Press, 1988), c. 142–143.

111

Дэвид Гросс, интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна (Paul Davies and J. Brown, ed., Superstrings: A Theory of Everything? Cambridge: Cambridge University Press, 1988).

112

Точнее, исключающий принцип Паули гласит, что два электрона не могут находиться в одном и том же квантовом состоянии с одинаковыми квантовыми числами. Это означает, что белый карлик можно упрощенно рассматривать как море Ферми или облако электронов, подчиняющихся принципу Паули.

Так как электроны не могут находиться в одном и том же квантовом состоянии, результирующая сила отталкивания не дает им сжаться в точку. Если речь идет о белом карлике, то эта отталкивающая сила в конечном счете противодействует силе гравитации.

Та же логика применима к нейтронам в нейтронной звезде, так как они тоже подчиняются исключающему принципу Паули, хотя вычисления в данном случае сложнее из-за других ядерных и общих релятивистских воздействий.

113

В Философских трудах Королевского общества Мичелл писал: «Если полу-диаметр сферы той же плотности, что и Солнце, превосходит Солнце в пропорции 500 к 1, тогда некое тело, падающее с бесконечно большой высоты в сторону сферы, приобретет у ее поверхности скорость, превышающую скорость света; следовательно, если предположить, что свет притягивается к другим телам с той же силой пропорционально его vis inerdae, тогда весь свет, излучаемый подобным телом, должен возвращаться к нему под действием его собственной силы тяжести». — Прим. авт.

(Джон Мичелл в Философских трудах Королевского общества (John Michell in Philosophical Transactions of the Royal Society 74 (1784): 35).)

114

Процитировано в: Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 57.

115

Процитировано в: Энтони Зи «Пугающая симметрия» (Anthony Zee, Fearful Symmetry, New York: Macmillan, 1986), c. 68.

116

Курт Гёдель «Пример нового типа космологических решений уравнений гравитационного поля Эйнштейна» (К. Godel, An Example of a New Type of Cosmological Solution of Einstein’s Field Equations of Gravitation, Reviews of Modern Physics 21, 1949), c. 447.

117

Фрэнк Типлер «Нарушение причинно-следственной связи в асимптотически плоском пространстве-времени» (F. Tipler, Causality Violation in Asymptotically Flat Space-Times, Physical Review Letters 37m 1976), c. 979.

118

Майкл Моррис, Кип Торн и Ульви Юртсевер «Червоточины, машины времени и слабое энергетическое условие» (М. S. Morris, К. S. Thorne, and U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Physical Review Letters 61, 1988), c. 1446.

119

Майкл Моррис, Кип Торн «Червоточины в пространстве-времени и их применение для межзвездных путешествий: Инструмент для преподавания общей теории относительности» (M. S. Morris, К. S. Thorne, Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity, American Journal of Physics 56, 1988), c. 411.

120

Фернандо Эчеверрия, Гуннар Клинкхаммер и Кип С. Торн «Биллиардные шары в пространстве-времени червоточин с замкнутыми временеподобными кривыми: Классическая теория» (Fernando Echeverria, Gunnar Klinkhammer and Kip S. Thorne, Billiard Balls in Wormhole Spacetimes with Closed Timelike Curves: Classical Theory, Physical Review D 44,1991), c. 1079.

121

Майкл Моррис, Кип Торн и Ульви Юртсевер «Червоточины», с. 1447.

122

Стивен Вайнберг «Проблема космологической константы» (Steven Weinberg, The Cosmological Constant Problem, Review of Modern Physics 61,1989), c. 6.

123

Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 377.

124

Хайнц Пейджелс «Идеальная симметрия: Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), c. 378.

125

Процитировано в: Алан Лайтмен и Роберта Брауэр «Истоки: Жизнь и миры современных космологов» (Alan Lightman, Roberta Brawer, Origins: The Lives and World of Modern Cosmologists, Cambridge, Mass.: Harvard University Press, 1990), c. 479.

126

Ричард Фейнман, интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна (Paul Davies and J. Brown, ed., Superstrings: A Theory of Everything? Cambridge: Cambridge University Press, 1988), c. 196.

1 ... 88 89 90 91 92 93 94 95 96 97
На этой странице вы можете бесплатно читать книгу Гиперпространство - Мичио Каку бесплатно.

Оставить комментарий