Рейтинговые книги
Читем онлайн Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 82

Итак, как же разобраться, насколько подробными должны быть измерение, наблюдение или, скажем, просто карта? Как отсечь ненужные детали?

* * *

В 1967 году Бенуа Мандельброт, математик, который впоследствии работал в Исследовательском центре имени Уотсонов в Йорктаун-Хейтс в штате Нью-Йорк, а также в Йельском университете, задал в журнале «Science» вопрос: «Какова длина побережья Британии?» Простой вопрос – и ответ на него, наверное, тоже должен быть простым. Однако никто не ожидал, какие последствия повлечет за собой этот ответ.

Исследователи и картографы уже много сотен лет составляют карты побережий. Первые рисунки изображают контуры континентов грубо, и выглядят они странновато, зато нынешние карты с высоким разрешением, построенные на основании спутниковых данных несопоставимо точнее. Если хочешь ответить на вопрос Мандельброта, для начала нужно всего ничего – карманный атлас мира и катушка ниток. Берешь нитку, выкладываешь по периметру Британии от Доннет-Хед до Лизард-Пойнт, не забывая проникать во все бухточки и закоулки. Потом растягиваешь нитку, сравниваешь ее длину с масштабом карты и – вуаля! – длина побережья острова измерена.

Однако точность такого измерения хочется проверить. И это несложно: берешь более подробную карту Картографического управления с масштабом, скажем, 1 миля в 2,5 дюймах, а не ту, на которой вся Британия умещается на одном листе. На ней есть всякие заливчики, мыски и полуостровки, которые тоже придется пройти ниткой; отклонения невелики, зато их очень много. И вскоре окажется, что по данным подробной карты побережье получается длиннее, чем по данным карманного атласа.

Какой же цифре верить? Конечно, той, которая получилась по данным более подробной карты. И все же можно было взять карту и еще подробнее, такую, на которой отмечен каждый валун у подножия каждого утеса. Просто картографы обычно пренебрегают валунами, если они меньше Гибралтара размером. Так что, наверное, для точного измерения длины побережья Британии пришлось бы пройти вдоль него пешком, запасшись очень длинной ниткой, чтобы выложить ее по всем извивам. И все равно то там, то сям пропустишь какой-нибудь камешек, не говоря уже о микроскопических ручейках, которые сочатся между песчинками.

Когда же это кончится?! С каждым разом побережье становится все длиннее и длиннее. А вдруг оно вообще окажется бесконечным, если учесть границы молекул, атомов, субатомных частиц? Не совсем так. Мандельброт сказал бы, что длина побережья окажется «неопределимой». Возможно, чтобы переосмыслить задачу, нам придется обратиться за помощью к концепции многомерного пространства. Не исключено, что одномерная линия просто не годится для извилистых побережий.

Чтобы довести до конца мысленный эксперимент Мандельброта, потребовалась новая, только что созданная отрасль математики, основанная на дробных – или фрактальных, от латинского слова «fractus», «сломанный» – измерениях, а не на привычных нам измерениях классической евклидовой геометрии, которых может быть одно, два или три. Мандельброт утверждал, что привычные представления о пространственных измерениях чрезмерно упрощены и поэтому не отражают сложное устройство линии побережья. Оказывается, что фракталы идеально подходят для описания «самоподобных» узоров, которые на разных масштабах выглядят примерно одинаково. Хорошие примеры фракталов в мире природы – это папоротники, снежинки и цветная капуста, однако идеальные фракталы получаются лишь из некоторых генерируемых на компьютере «бесконечно повторяющихся» структур, в которых форма макрообъекта состоит из меньших по размеру версий той же формы или узора, а те, в свою очередь, состоят из миниатюрных версий того же самого – и так далее неопределенно долго.

Однако, если углубиться в чистый фрактал, новой информации не встретишь, сколько бы ни множились его составляющие, поскольку сам «образец» выглядит всегда одинаково. Напротив, если углубляться в устройство человеческого организма, в конце концов наткнешься на клетку, а это структура исключительно сложная, наделенная совсем не теми свойствами и действующая совсем не по тем законам, которым подчиняется организм на более крупных масштабах. Стоит перейти границу клетки – и перед тобой откроется новая Вселенная информации.

* * *

А сама Земля? Одна из первых дошедших до нас моделей мироздания сохранилась на вавилонской глиняной табличке возрастом в 2600 лет и представляет собой диск, окруженный океанами. На самом деле, если стоишь посреди просторной равнины (например, в долине рек Тигр и Евфрат) и смотришь во все стороны, Земля и правда похожа на плоский диск.

Древние греки (в том числе Пифагор и Геродот) заметили, что концепция плоской Земли не лишена недостатков, и задумались, что Земля все же может быть сферой. В IV веке до н. э. Аристотель, великий систематизатор знаний, привел несколько доводов в поддержку этой гипотезы. Один из них – лунные затмения. Луна, обходя вокруг Земли, регулярно попадает в коническую тень, которую Земля отбрасывает в пространство. Аристотель наблюдал это зрелище десятилетиями – и отметил, что тень Земли на Луне неизменно круглая. А такое может быть лишь в том случае, когда Земля представляет собой сферу, поскольку только сфера отбрасывает круглую тень всегда, где бы ни находился источник падающего на нее света. Если бы Земля была плоским диском, тень иногда становилась бы овальной. А когда Земля оказывалась бы к Солнцу краем, тень превращалась бы в тонкую линию. Круг получался бы только тогда, когда Земля была бы к Солнцу «лицом». Уже один этот аргумент обладал такой силой, что, казалось бы, уже в ближайшие столетия картографы должны были изготовить сферическую модель Земли. Но нет. Первый глобус ждал своего часа до 1490–1492 года – до зари великих географических открытий и великой колонизации.

* * *

Хорошо, договорились, Земля – шар. Однако дьявол, как всегда, кроется в деталях. В своих «Началах» (1687) Ньютон высказал предположение, что поскольку вещество, из которого состоят вращающиеся сферические тела, при вращении подвергается центробежной силе, наша планета, как, впрочем, и все остальные, должна быть приплюснута у полюсов и слегка выпукла по экватору: эта форма называется сплюснутым сфероидом. Полвека спустя Французская академия наук, чтобы проверить гипотезу Ньютона, отправила математиков в две экспедиции – одну на Полярный круг, другую на экватор – с заданием измерить длину одного градуса широты по поверхности Земли на одной и той же долготе. На Полярном круге градус оказался немного длиннее, и такое могло быть только если Земля и правда приплюснута. Ньютон был прав.

Чем быстрее вращается планета, тем больше должна быть ее выпуклость по экватору. Юпитер, самая массивная планета в Солнечной системе, вращается очень быстро, сутки на нем длятся 10 земных часов, и Юпитер у экватора на 7 % шире, чем у полюсов. Наша Земля гораздо меньше, и сутки на ней длятся 24 часа, поэтому у экватора она шире всего на 0,3 % – при диаметре около 12 700 км разница составляет всего 44 км. Не о чем даже и говорить.

Из этой легкой сплющенности есть одно интересное следствие: если встать на экваторе даже на уровне моря, окажешься дальше от центра Земли, чем в любом другом месте на Земле. А если хочешь сделать все правильно, надо забраться на гору Чимборасо в центральном Эквадоре, неподалеку от экватора. Вершина Чимборасо возвышается над уровнем моря на 6300 м, но главное – она на 2 с лишним километра дальше от центра Земли, чем вершина горы Эверест.

* * *

Из-за спутников все, как ни странно, только запуталось. В 1958 году маленький космический аппарат «Авангард-1» сообщил нам поразительную новость: оказывается, экваториальная выпуклость к югу несколько больше, чем к северу. Мало того, уровень моря на Южном полюсе, как выяснилось, чуть-чуть ближе к центру Земли, чем уровень моря на Северном полюсе. Иначе говоря, наша планета – груша.

За этим последовал еще один обескураживающий факт: Земля, оказывается, меняет форму. Ее поверхность каждый день вздымается и опадает, когда океаны, влекомые притяжением Луны и – в меньшей степени – Солнца, накатываются на континентальные шельфы, а затем отступают. Приливные силы влияют на воду во всем мире, делают поверхность океанов слегка выпуклой. Это давно известный феномен. Однако приливные силы растягивают и твердую землю, так что экваториальный радиус изо дня в день, из месяца в месяц то увеличивается, то сокращается – в ритме океанских приливов и отливов и фаз Луны.

То есть Земля – грушевидный сплюснутый сфероид, который еще и крутит обруч.

Неужели эти уточнения никогда не кончатся? Возможно, и не кончатся. Перемотаем пленку вперед, на 2002 год. Американо-германская космическая программа под названием GRACE (Gravity Recovery and Climate Experiment, «Эксперимент по исследованию гравитации и климата») запустила пару спутников, чтобы уточнить модель геоида Земли – то есть выяснить, какую форму имела бы Земля, если бы на уровень моря не влияли ни океанские течения, ни приливы и отливы, ни погода, иначе говоря, какова была бы гипотетическая поверхность Земли, если бы сила тяжести в каждой точке была строго перпендикулярна. Таким образом, геоид воплощает истинную горизонталь, полностью учитывающую все вариации формы Земли и плотность вещества под ее поверхностью. А плотникам, геодезистам и разработчикам акведуков придется подчиняться, ничего не попишешь.

1 ... 5 6 7 8 9 10 11 12 13 ... 82
На этой странице вы можете бесплатно читать книгу Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон бесплатно.
Похожие на Смерть в черной дыре и другие мелкие космические неприятности - Нил Тайсон книги

Оставить комментарий